Math 1A - What f^{\prime} and $f^{\prime \prime}$ tell us about f

Peyam Ryan Tabrizian

Friday, October 25th, 2013

1 What f^{\prime} tells us about f

Increasing/Decreasing Test

(a) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval
(b) If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval

First Derivative Test

(a) If f changes from increasing to decreasing at c, then f has a local maximum at c
(b) If f^{\prime} changes from decreasing to increasing at c, then f has a local min at c

2 What $f^{\prime \prime}$ tells us about f

Concavity Test

(a) If $f^{\prime \prime}(x)>0$ on an interval, then f is concave up
(b) If $f^{\prime \prime}(x)<0$ on an interval, then f is concave down
(c) If $f^{\prime \prime}(c)=0$ and $f^{\prime \prime}$ changes sign at c, then $(c, f(c))$ is an inflection point of f

Second Derivative Test

(a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c (think of $y=x^{2}$)
(b) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c (think of $y=-x^{2}$)
(c) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$, then the second derivative test is inconclusive (not the same as saying that f has no local max/min at c)

